Tampilkan postingan dengan label KIMIA ANALISA. Tampilkan semua postingan
Tampilkan postingan dengan label KIMIA ANALISA. Tampilkan semua postingan

Senin, 20 Juni 2011

Kurva Titrasi Redoks

Kurva Titrasi Redoks

Sebelum kita belajar untuk menggambar kurva titrasi redoks maka kita harus mempelajari terlebih dahulu bagaimana mencari konstanta kesetimbangan reaksi redoks. Konstanta tersebut dapat dipakai untuk mencari konsentrasi spesies yang terlibat dalam reaksi redoks pada saat titik equivalent terjadi. Potensial sel akan benilai “nol” pada saat kesetimbangan tercapai atau dengan kata lain penjumlahan potensial setengah reaksi reduksi dan setengah reaksi oksidasi akan sama dengan “nol”, dengan demikian persamaan Nernst untuk keduanya dapat disamakan.
Persamaan Nernst untuk reaksi  aOks  + ne  -> bRed dapat dinyatakan sebagai berikut:
E = Eo – 2.3026RT/nF log [red]b/[Oks]a
Pada 25 C nilai 2.3026RT/F adalah 0.05916/n sehingga persamaan diatas dapat ditulis lagi menjadi:
E = Eo – 0.05916/n log [red]b/[Oks]a
Pada saat reaksi redoks mencapai kesetimbangan maka nila Ered akan sama dengan nilai Eoks. Sedangkan hubungan antara energi bebas dengan konstanta kesetimbangannya adalah sebagai berikut
?Go = -RT ln K atau ?Go=-nFEo
-RT ln K = -nFE
Eo = RT/nF ln K
Secara umum potensial larutan pada titik ekuivalen dapat dicari dengan persamaan berikut :
E =  (n1Eo1 + n2Eo2) / n1+n2
Dengan syarat reaksi tidak melibatkan ion poliatomik seperti CrO42- dan tidak melibatkan ion hydrogen. Indeks 1 untuk setengah reaksi oksidasi dan 2 untuk setengah reaksi reduksi.
Kurva titrasi dibuat dengan mengeplotkan potensial larutan terhadap volume larutan titrant yang ditambahkan (modifikasi alat dapat dilihat pada gambar) dimana 1 merupakan elektroda untuk mengukur potensial atau dapat berupa pH meter, dan 2 merupakan alat untuk tempat titrant. Setelah titrant ditambahkan maka larutan diaduk dengan stir magnetic agar reaksi berjalan merata dan cepat.
Berikut kurva titrasi antara larutan Besi(II)amonium sulfat dengan 0.02 M kalium permanganat (analit dibuat dari 95 mL Besi(II)amonium sulfat kira-kira 0.02 M ditambah dengan 5 mL asam sulfat pekat.
kurva titrasi redoks
Dari gambar diketahui bahwa titik akhir titrasi diperoleh pada saat penambahan KMnO4 sebanyak 20.4 mL.
Maka mmol KMnO4 = 0.02 M x 20.4 mL = 0.408 mmol
Mmol Besi(II) = 5 x 0.408 = 0.00204 mol
[Fe2+] = 0.00204 mol/0.1 L = 0.0204 M

http://kimiaanalisa.web.id/kurva-titrasi-redoks/

Iodimetri

Iodimetri merupakan titrasi redoks yang melibatkan titrasi langsung I2 dengan suatu agen pereduksi. I2 merupakan oksidator yang bersifat moderat, maka jumlah zat yang dapat ditentukan secara iodimetri sangat terbatas, beberapa contoh zat yang sering ditentukan secara iodimetri adalah H2S, ion sulfite, Sn2+, As3+ atau N2H4. Akan tetapi karena sifatnya yang moderat ini maka titrasi dengan I2 bersifat lebih selektif dibandingkan dengan titrasi yang menggunakan titrant oksidator kuat. Pada umumnya larutan I2 distandarisasi dengan menggunakan standar primer As2O3, As2O3 dilarutkan dalam natrium hidroksida dan kemudian dinetralkan dengan penambahan asam. Disebabkan kelarutan iodine dalam air nilainya kecil maka larutan I2 dibuat dengan melarutkan I2 dalam larutan KI, dengan demikian dalam keadaan sebenarnya yang dipakai untuk titrasi adalah larutan I3-.
I2 + I-  -> I3-
Titrasi iodimetri dilakukan dalam keadaan netral atau dalam kisaran asam lemah sampai basa lemah. Pada pH tinggi (basa kuat) maka iodine dapat mengalami reaksi disproporsionasi menjadi hipoiodat.
I2 + 2OH-  <-> IO3-  +  I-  + H2O
Sedangkan pada keadaan asam kuat maka amilum yang dipakai sebagai indicator akan terhidrolisis, selain itu pada keadaan ini iodide (I-) yang dihasilkan dapat diubah menjadi I2 dengan adanya O2 dari udara bebas, reaksi ini melibatkan H+ dari asam.
4I- + O2 + 4H+  -> 2I2 + 2H2O
Titrasi dilakukan dengan menggunakan amilum sebagai indicator dimana titik akhir titrasi diketahui dengan terjadinya kompleks amilum-I2 yang berwarna biru tua. Beberapa reaksi penentuan denga iodimetri ditulis dalam reaksi berikut:
H2S + I2 -> S + 2I- + 2H+
SO32- + I2 + H2O -> SO42- + 2I- + 2H+
Sn2+  + I2  -> Sn4+ + 2I-
H2AsO3 + I2 + H2O -> HAsO42- + 2I- + 3H+


 http://kimiaanalisa.web.id/iodimetri/

Iodometri

Pada titrasi iodometri, analit yang dipakai adalah oksidator yang dapat bereaksi dengan I- (iodide) untuk menghasilkan I2, I2 yang terbentuk secara kuantitatif dapat dititrasi dengan larutan tiosulfat. Dari pengertian diatas maka titrasi iodometri adalah dapat dikategorikan sebagai titrasi kembali. Iodida adalah reduktor lemah dan dengan mudah akan teroksidasi jika direaksikan dengan oksidator kuat. Iodida tidak dipakai sebagai titrant hal ini disebabkan karena factor kecepatan reaksi dan kurangnya jenis indicator yang dapat dipakai untuk iodide. Oleh sebab itu titrasi kembali merubakan proses titrasi yang sangat baik untuk titrasi yang melibatkan iodide. Senyawaan iodide umumnya KI ditambahkan secara berlebih pada larutan oksidator sehingga terbentuk I2. I2 yang terbentuk adalah equivalent dengan jumlah oksidator yang akan ditentukan. Jumlah I2 ditentukan dengan menitrasi I2 dengan larutan standar tiosulfat (umumnya yang dipakai adalah Na2S2O3) dengan indicator amilum jadi perubahan warnanya dari biru tua kompleks amilum-I2 sampai warna ini tepat hilang.
Reaksi yang terjadi pada titrasi iodometri untuk penentuan iodat adalah sebagai berikut:
IO3-  + 5 I-  + 6H+  -> 3I2  + H2O
I2 + 2 S2O32-  -> 2I- + S4O62-
Setiap mmol IO3- akan menghasilkan 3 mmol I2 dan 3 mmol I2 ini akan tepat bereaksi dengan 6 mmol S2O32- (ingat 1 mmol I2 tepat bereaksi dengan 2 mmol S2O32-) sehingga mmol IO3- ditentukan atau setara dngan 1/6 mmol S2O32-.
Mengapa kita menitrasi langsung antara tiosulfat dengan analit? Beberapa alasan yang dapat dijabarkan adalah karena analit yang bersifat sebagai oksidator dapat mengoksidasi tiosulfat menjadi senyawaan yang bilangan oksidasinya lebih tinggi dari tetrationat dan umumnya reaksi ini tidak stoikiometri. Alasa kedua adalah tiosulfat dapat membentuk ion kompleks dengan beberapa ion logam seperti Besi(II).
Beberapa hal yang perlu diperhatikan dalam melakukan titrasi Iodometri adalah sebagai berikut:
Penambahan amilum sebaiknya dilakukan saat menjelang akhir titrasi, dimana hal ini ditandai dengan warna larutan menjadi kuning muda (dari oranye sampai coklat  akibat terdapatnya I2 dalam jumlah banyak), alasannya kompleks amilum-I2 terdisosiasi sangat lambat akibatnya maka banyak I2 yang akan terabsorbsi oleh amilum jika amilum ditambahkan pada awal titrasi, alasan kedua adalah biasanya iodometri dilakukan pada media asam kuat sehingga akan menghindari terjadinya hidrolisis amilum
Titrasi harus dilakukan dengan cepat untuk meminimalisasi terjadinya oksidasi iodide oleh udara bebas. Pengocokan pada saat melakukan titrasi iodometri sangat diwajibkan untuk menghindari penumpukan tiosulfat pada area tertentu, penumpukkan konsentrasi tiosulfat dapat menyebabkan terjadinya dekomposisi tiosulfat untuk menghasilkan belerang. Terbentuknya reaksi ini dapat diamati dengan adanya belerang dan larutan menjadi bersifat koloid (tampak keruh oleh kehadiran S).
S2O32-  +  2H+  -> H2SO3 + S
Pastikan jumlah iodide yang ditambahkan adalah berlebih sehingga semua analit tereduksi dengan demikian titrasi akan menjadi akurat. Kelebihan iodide tidak akan mengganggu jalannya titrasi redoks akan tetapi jika titrasi tidak dilakukan dengan segera maka I- dapat teroksidasi oleh udara menjadi I2.
Bagaimana menstandarisasi larutan tiosulfat?
Tiosulfat yang dipakai dalam titrasi iodometri dapat distandarisasi dengan menggunakan senyawa oksidator  yang memiliki kemurnian tinggi (analytical grade) seperti K2Cr2O7, KIO3, KBrO3, atau senyawaan tembaga(II).
Bila digunakan Cu(II) maka pH harus dibuffer pada pH 3 dan dipakai tiosianat untuk masking agent, KSCN ditambahkan pada waktu mendektitik akhir titrasi dengan tujuan untuk menggantikan I2 yang teradsorbsi oleh CuI. Bila pH yang digunakan tinggi maka tembaga(II) akan terhidrolisis dan akan terbentuk hidroksidanya. Jika keasaman larutan sangat tinggi maka cenderung terjadi reaksi I- sebagai akibat adanya Cu(II) dalam larutan yang megkatalis reaksi tersebut.
Beberapa contoh reaksi iodometri adalah sebagai berikut
2MnO4-  + 10 I- + 16 H+  <-> 2Mn2+  + 5 I2 + 8H2O
Cr2O72- + 6I- <-> 14 H+  <-> 2Cr3+  + 3 I2 + 7H2O
2Fe3+  +  2I-  <-> 2Fe2+  + I2
2 Ce4+  + 2I-  <-> 2Ce3+ + I2
Br2  + 2I-  <-> 2Br-  + I2

http://kimiaanalisa.web.id/115/


 
Design by Wordpress Theme | Bloggerized by Free Blogger Templates | free samples without surveys