Kamis, 27 September 2012

Pemeriksaan Kadar Protein Metode Kjeldahl

KJELDAHL

Metode Kjeldahl merupakan metode yang sederhana untuk penetapan nitrogen total pada asam amino, protein dan senyawa yang mengandung nitrogen. Sampel didestruksi dengan asam sulfat dan dikatalisis dengan katalisator yang sesuai sehingga akan menghasilkan amonium sulfat. Setelah pembebasan dengan alkali kuat, amonia yang terbentuk disuling uap secara kuantitatif ke dalam larutan penyerap dan ditetapkan secara titrasi. Metode ini telah banyak mengalami modifikasi. Metode ini cocok digunakan secara semimikro, sebab hanya memerlukan jumlah sampel dan pereaksi yang sedikit dan waktu analisa yang pendek.
Cara Kjeldahl digunakan untuk menganalisis kadar protein kasar dalam bahan makanan secara tidak langsung, karena yang dianalisis dengan cara ini adalah kadar nitrogennya. Dengan mengalikan hasil analisis tersebut dengan angka konversi 6,25, diperoleh nilai protein dalam bahan makanan itu. Untuk beras, kedelai, dan gandum angka konversi berturut-turut sebagai berikut: 5,95, 5,71, dan 5,83. Angka 6,25 berasal dari angka konversi serum albumin yang biasanya mengandung 16% nitrogen. Prinsip cara analisis Kjeldahl adalah sebagai berikut: mula-mula bahan didestruksi dengan asam sulfat pekat menggunakan katalis selenium oksiklorida atau butiran Zn. Amonia yang terjadi ditampung dan dititrasi dengan bantuan indikator. Cara Kjeldahl pada umumnya dapat dibedakan atas dua cara, yaitu cara makro dan semimakro. Cara makro Kjeldahl digunakan untuk contoh yang sukar dihomogenisasi dan besar contoh 1-3 g, sedang semimikro Kjeldahl dirancang untuk contoh ukuran kecil yaitu kurang dari 300 mg dari bahan yang homogen. Cara analisis tersebut akan berhasil baik dengan asumsi nitrogen dalam bentuk ikatan N-N dan N-O dalam sampel tidak terdapat dalam jumlah yang besar. Kekurangan cara analisis ini ialah bahwa purina, pirimidina, vitamin-vitamin, asam amino besar, kreatina, dan kreatinina ikut teranalisis dan terukur sebagai nitrogen protein. Walaupun demikian, cara ini kini masih digunakan dan dianggap cukup teliti untuk pengukuran kadar protein dalam bahan makanan.
Analisa protein cara Kjeldahl pada dasarnya dapat dibagi menjadi tiga tahapan yaitu proses destruksi, proses destilasi dan tahap titrasi.
1. Tahap destruksi
Pada tahapan ini sampel dipanaskan dalam asam sulfat pekat sehingga terjadi destruksi menjadi unsur-unsurnya. Elemen karbon, hidrogen teroksidasi menjadi CO, CO2 dan H2O. Sedangkan nitrogennya (N) akan berubah menjadi (NH4)2SO4. Untuk mempercepat proses destruksi sering ditambahkan katalisator berupa campuran Na2SO4 dan HgO (20:1). Gunning menganjurkan menggunakan K2SO4 atau CuSO4. Dengan penambahan katalisator tersebut titk didih asam sulfat akan dipertinggi sehingga destruksi berjalan lebih cepat. Selain katalisator yang telah disebutkan tadi, kadang-kadang juga diberikan Selenium. Selenium dapat mempercepat proses oksidasi karena zat tersebut selain menaikkan titik didih juga mudah mengadakan perubahan dari valensi tinggi ke valensi rendah atau sebaliknya.
2. Tahap destilasi
Pada tahap destilasi, ammonium sulfat dipecah menjadi ammonia (NH3) dengan penambahan NaOH sampai alkalis dan dipanaskan. Agar supaya selama destilasi tidak terjadi superheating ataupun pemercikan cairan atau timbulnya gelembung gas yang besar maka dapat ditambahkan logam zink (Zn). Ammonia yang dibebaskan selanjutnya akan ditangkap oleh asam khlorida atau asam borat 4 % dalam jumlah yang berlebihan. Agar supaya kontak antara asam dan ammonia lebih baik maka diusahakan ujung tabung destilasi tercelup sedalam mungkin dalam asam. Untuk mengetahui asam dalam keadaan berlebihan maka diberi indikator misalnya BCG + MR atau PP.
3. Tahap titrasi
Apabila penampung destilat digunakan asam khlorida maka sisa asam khorida yang bereaksi dengan ammonia dititrasi dengan NaOH standar (0,1 N). Akhir titrasi ditandai dengan tepat perubahan warna larutan menjadi merah muda dan tidak hilang selama 30 detik bila menggunakan indikator PP.
%N = × N. NaOH × 14,008 × 100%
Apabila penampung destilasi digunakan asam borat maka banyaknya asam borat yang bereaksi dengan ammonia dapat diketahui dengan titrasi menggunakan asam khlorida 0,1 N dengan indikator (BCG + MR). Akhir titrasi ditandai dengan perubahan warna larutan dari biru menjadi merah muda.
%N = × N.HCl × 14,008 × 100 %
Setelah diperoleh %N, selanjutnya dihitung kadar proteinnya dengan mengalikan suatu faktor. Besarnya faktor perkalian N menjadi protein ini tergantung pada persentase N yang menyusun protein dalam suatu bahan.

PENETAPAN KADAR PROTEIN


PENGETAHUAN AWAL TENTANG PROTEIN
Dalam kehidupan sehari-hari kita melakukan aktivitas. Untuk melakukan aktivitas itu, kita memerlukan energi yang dapat diperoleh dari bahan makanan yang kita makan. Pada umumnya bahan makanan itu mengandung tiga kelompok utama senyawa kimia, yaitu karbohidrat, protein, dan lemak.
Protein merupakan biopolymer polipeptida yang tersusun dari sejumlah asam amino yang dihubungkan oleh ikatan peptida. Protein merupakan biopolymer yang multifungsi, yaitu sebagai struktural pada sel maupun jaringan dan organ, sebagai enzim suatu biokatalis, sebagai pengemban atau pembawa senyawa atau zat ketika melalui biomembran sel, dan sebagai zat pengatur.
Selain itu protein juga merupakan makromolekul yang paling berlimpah di dalam sel dan menyusun lebih dari setengah berat kering pada hampir semua organisme. Protein merupakan instrumen yang mengekspresikan informasi genetik. Protein mempunyai fungsi unik bagi tubuh, antara lain menyediakan bahan-bahan yang penting peranannya untuk pertumbuhan dan memelihara jaringan tubuh, mengatur kelangsungan proses di dalam tubuh, dan memberi tenaga jika keperluannya tidak dapat dipenuhi oleh karbohidrat dan lemak.
Struktur protein tidak stabil karena mudah mengalami denaturasi yaitu keadaan dimana protein terurai menjadi struktur primernya, baik reversibel maupun ireversibel. Faktor-faktor yang menyebabkan denaturasi adalah pH, panas, pelarut, kekuatan ion, terlarut, dan radiasi. Denaturasi yang berbahaya yaitu raksa (Hg) untuk pemurnian emas seperti yang terjadi di Minamata, Jepang. Protein ada yang reaktif karena asam amino penyusunnya mengandung gugus fungsi yang reaktif, seperti SH, -OH, NH2, dan –COOH. Contoh protein aktif adalah enzim, hormon, antibodi, dan protein transport. Reaksi protein aktif bersifat selektif dan spesifik, gugus sampingnya yang selektif dan susunan khas makromolekulnya.
Ada berbagai cara dalam pengujian terhadap protein yaitu dengan reaksi uji asam amino dan reaksi uji protein. Reaksi uji asam amino sendiri terdiri dari 6 macam uji yaitu: uji millon, uji hopkins cole, uji belerang, uji xantroproteat, dan uji biuret. Sedangkan untuk uji protein, berdasarkan pada pengendapan oleh garam, pengendapan oleh logam dan alkohol. Serta uji koagulasi dan denaturasi protein
Pada uji asam amino terdapat uji bersifat umum dan uji bersifat uji berdasakan jenis asam aminonya. Seperti halnya uji millon bersifat spesifik terhadap tirosin, uji Hopkins cole terhadap triptofan, uji belerang terhadap sistein, uji biuret bereaksi positif terhadap pembentukan senyawa kompleks Cu gugus –CO dan –NH dari rantai peptida dalam suasana basa. Serta uji xantroproteat bereaksi positif untuk asam amino yang mengandung inti benzena.


Analisis protein dapat dilakukan dengan dua metode, yaitu ; Secara kualitatif terdiri atas ; reaksi Xantoprotein, reaksi Hopkins-Cole, reaksi Millon, reaksi Nitroprusida, dan reaksi Sakaguchi. Secara kuantitatif terdiri dari ; metode Kjeldahl, metode titrasi formol, metode Lowry, metode spektrofotometri visible (Biuret), dan metode spektrofotometri UV.
Analisa Kualitatif
1. Reaksi Xantoprotein
Larutan asam nitrat pekat ditambahkan dengan hati-hati ke dalam larutan protein. Setelah dicampur terjadi endapan putih yang dapat berubah menjadi kuning apabila dipanaskan. Reaksi yang terjadi ialah nitrasi pada inti benzena yang terdapat pada molekul protein. Reaksi ini positif untuk protein yang mengandung tirosin, fenilalanin dan triptofan
2. Reaksi Hopkins-Cole
Larutan protein yang mengandung triptofan dapat direaksikan dengan pereaksi Hopkins-Cole yang mengandung asam glioksilat. Pereaksi ini dibuat dari asam oksalat dengan serbuk magnesium dalam air. Setelah dicampur dengan pereaksi Hopkins-Cole, asam sulfat dituangkan perlahan-lahan sehingga membentuk lapisan di bawah larutan protein. Beberapa saat kemudian akan terjadi cincin ungu pada batas antara kedua lapisan tersebut
3. Reaksi Millon
Pereaksi Millon adalah larutan merkuro dan merkuri nitrat dalam asam nitrat. Apabila pereaksi ini ditambahkan pada larutan protein, akan menghasilkan endapan putih yang dapat berubah menjadi merah oleh pemanasan. Pada dasarnya reaksi ini positif untuk fenol-fenol, karena terbentuknya senyawa merkuri dengan gugus hidroksifenil yang berwarna.
4. Reaksi Natriumnitroprusida
Natriumnitroprusida dalam larutan amoniak akan menghasilkan warna merah dengan protein yang mempunyai gugus –SH bebas. Jadi protein yang mengandung sistein dapat memberikan hasil positif.
5. Reaksi Sakaguchi
Pereaksi yang digunakan ialah naftol dan natriumhipobromit. Pada dasarnya reaksi ini memberikan hasil positif apabila ada gugus guanidin. Jadi arginin atau protein yang mengandung arginin dapat menghasilkan warna merah.
6. Metode Biuret
Larutan protein dibuat alkalis dengan NaOH kemudian ditambahkan larutan CuSO4 encer. Uji ini untuk menunjukkan adanya senyawasenyawa yang mengandung gugus amida asam yang berada bersama gugus amida yang lain. Uji ini memberikan reaksi positif yaitu ditandai dengan timbulnya warna merah violet atau biru violet.
Analisa Kuantitatif
Analisis protein dapat digolongkan menjadi dua metode, yaitu: Metode konvensional, yaitu metode Kjeldahl (terdiri dari destruksi, destilasi, titrasi), titrasi formol. Digunakan untuk protein tidak terlarut.
Metode modern, yaitu metode Lowry, metode spektrofotometri visible, metode spektrofotometri UV. Digunakan untuk protein terlarut.
1. Metode Kjeldahl
Metode ini merupakan metode yang sederhana untuk penetapan nitrogen total pada asam amino, protein, dan senyawa yang mengandung nitrogen. Sampel didestruksi dengan asam sulfat dan dikatalisis dengan katalisator yang sesuai sehingga akan menghasilkan amonium sulfat. Setelah pembebasan alkali dengan kuat, amonia yang terbentuk disuling uap secara kuantitatif ke dalam larutan penyerap dan ditetapkan secara titrasi.
Penetapan Kadar
Prosedur :
1. Timbang 1 g bahan yang telah dihaluskan, masukkan dalam labu Kjeldahl (kalau kandungan protein tinggi, misal kedelai gunakan bahan kurang dari 1 g).
2. Kemudian ditambahkan 7,5 g kalium sulfat dan 0,35 g raksa (II) oksida dan 15 ml asam sulfat pekat.
3. Panaskan semua bahan dalam labu Kjeldahl dalam lemari asam sampai berhenti berasap dan teruskan pemanasan sampai mendidih dan cairan sudah menjadi jernih. Tambahkan pemanasan kurang lebih 30 menit, matikan pemanasan dan biarkan sampai dingin.
4. Selanjutnya tambahkan 100 ml aquadest dalam labu Kjeldahl yang didinginkan dalam air es dan beberapa lempeng Zn, tambahkan 15 ml larutan kalium sulfat 4% (dalam air) dan akhirnya tambahkan perlahan-lahan larutan natrium hidroksida 50% sebanyak 50 ml yang telah didinginkan dalam lemari es.
5. Pasanglah labu Kjeldahl dengan segera pada alat destilasi. Panaskan labu Kjeldahl perlahan-lahan sampai dua lapis cairan tercampur, kemudian panaskan dengan cepat sampai mendidih.
6. Destilasi ditampung dalam Erlenmeyer yang telah diisi dengan larutan baku asam klorida 0,1N sebanyak 50 ml dan indicator merah metil 0,1% b/v (dalam etanol 95%) sebanyak 5 tetes, ujung pipa kaca destilator dipastikan masuk ke dalam larutan asam klorida 0,1N.
7. Proses destilasi selesai jika destilat yang ditampung lebih kurang 75 ml. Sisa larutan asam klorida 0,1N yang tidak bereaksi dengan destilat dititrasi dengan larutan baku natrium hidroksida 0,1N. Titik akhir titrasi tercapai jika terjadi perubahan warna larutan dari merah menjadi kuning. Lakukan titrasi blanko.
Kadar Protein
Kadar protein dihitung dengan persamaan berikut :
Keterangan :
Fk : faktor koreksi
Fk N : 16
2. Metode Titrasi Formol
Larutan protein dinetralkan dengan basa (NaOH) lalu ditambahkan formalin akan membentuk dimethilol. Dengan terbentuknya dimethilol ini berarti gugus aminonya sudah terikat dan tidak akan mempengaruhi reaksi antara asam dengan basa NaOH sehingga akhir titrasi dapat diakhiri dengan tepat. Indikator yang digunakan adalah p.p., akhir titrasi bila tepat terjadi perubahan warna menjadi merah muda yang tidak hilang dalam 30 detik.
3. Metode Lowry
Prosedur :
Pembuatan reagen Lowry A : Merupakan larutan asam fosfotungstat-asam fosfomolibdat dengan perbandingan (1 : 1)
Pembuatan reagen Lowry B :
Campurkan 2% natrium karbonat dalam 100 ml natrium hidroksida 0,1N.
Tambahkan ke dalam larutan tersebut 1 ml tembaga (II) sulfat 1% dan 1 ml kalium natrium tartrat 2%.
Penetapan Kadar
a. Pembuatan kurva baku
Siapkan larutan bovin serum albumin dengan konsentrasi 300 µg/ml (Li). Buat seri konsentrasi dalam tabung reaksi, misal dengan komposisi berikut :
Tambahkan ke dalam masing-masing tabung 8 ml reagen Lowry B dan biarkan selama 10 menit, kemudian tambahkan 1 ml reagen Lowry A. Kocok dan biarkan selama 20 menit. Baca absorbansinya pada panjang gelombang 600 nm tehadap blanko. (Sebagai blanko adalah tabung reaksi no.1 pada tabel di atas)
b. Penyiapan Sampel
Ambil sejumlah tertentu sampel protein yang terlarut misal albumin, endapkan dahulu dengan penambahan amonium sulfat kristal (jumlahnya tergantung dari jenis proteinnya, kalau perlu sampai mendekati kejenuhan amonium sulfat dalam larutan). Pisahkan protein yang mengendap dengan sentrifus 11.000 rpm selama 10 menit, pisahkan supernatannya. Presipitat yang merupakan proteinnya kemudian dilarutkan kembali dengan dapar asam asetat pH 5 misal sampai 10,0 ml. Ambil volume tertentu dan lakukan penetapan selanjutnya seperti pada kurva baku mulai dari penambahan 8 ml reagen Lowry A sampai seterusnya.
4. Metode Spektrofotometri Visible (Biuret)
Prosedur :
Pembuatan reagen Biuret :
Larutkan 150 mg tembaga (II) sulfat (CuSO4.
5H2O) dan kalium natrium tartrat (KNaC4H4O6. 4H2O) dalam 50 ml aquades dalam labu takar 100 ml. Kemudian tambahkan 30 ml natrium hidroksida 10% sambil dikocok-kocok, selanjutnya tambahkan aquades sampai garis tanda.
Pembuatan larutan induk bovin serum albumin (BSA):
Ditimbang 500 mg bovin serum albumin dilarutkan dalam aquades sampai 10,0 ml sehingga kadar larutan induk 5,0% (Li). Penetapan kadar (Metode Biuret) :
Pembuatan kurva baku :
Dalam kuvet dimasukkan larutan induk, reagen Biuret dan aquades misal dengan komposisi sebagai berikut:
Setelah tepat 10 menit serapan dibaca pada ë 550 nm terhadap blanko yang terdiri dari 800 µL reagen Biuret dan 200 µL aquades.
Cara mempersiapkan sampel :
Ambil sejumlah tertentu sampel protein yang terlarut misal albumin, endapkan dahulu dengan penambahan amonium sulfat kristal (jumlahnya tergantung dari jenis proteinnya, kalau perlu sampai mendekati kejenuhan amonium sulfat dalam larutan). Pisahkan protein yang mengendap dengan sentrifus 11.000 rpm selama 10 menit, pisahkan supernatannya. Presipitat yang merupakan proteinnya kemudian dilarutkan kembali dengan dapar asam asetat pH 5 misal sampai 10,0 ml. Ambil sejumlah µL larutan tersebut secara kuantitatif kemudian tambahkan reagen Biuret dan jika perlu tambah dengan dapar asetat pH 5 untuk pengukuran kuantitatif.
Setelah 10 menit dari penambahan reagen Biuret, baca absorbansinya pada panjang gelombang 550 nm terhadap blanko yang berisi reagen Biuret dan dapar asetat pH 5.
Perhatikan adanya faktor pengenceran dan absorban sampel sedapat mungkin harus masuk dalam kisaran absorban kurva baku.
5. Metode Spektrofotometri UV
Asam amino penyusun protein diantaranya adalah triptofan, tirosin dan fenilalanin yang mempunyai gugus aromatik. Triptofan mempunyai absorbsi maksimum pada 280 nm, sedang untuk tirosin mempunyai absorbsi maksimum pada 278 nm. Fenilalanin menyerap sinar kurang kuat dan pada panjang gelombang lebih pendek. Absorpsi sinar pada 280 nm dapat digunakan untuk estimasi konsentrasi protein dalam larutan. Supaya hasilnya lebih teliti perlu dikoreksi kemungkinan adanya asam nukleat dengan pengukuran absorpsi pada 260 nm.
Pengukuran pada 260 nm untuk melihat kemungkinan kontaminasi oleh asam nukleat. Rasio absorpsi 280/260 menentukan faktor koreksi yang ada dalam suatu tabel.



Pendahuluan
Protein (akar kata protos dari bahasa Yunani yang berarti "yang paling utama") adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida. Molekul protein mengandung karbon, hidrogen, oksigen, nitrogen dan kadang kala sulfur serta fosfor. Protein berperan penting dalam struktur dan fungsi semua sel makhluk hidup dan virus (Wikipedia, 2007).
Protein merupakan suatu zat makanan yang sangat penting bagi tubuh karena zat ini berfungsi sebagai sumber energi dalam tubuh serta sebagai zat pembangun dn pengatur. Protein adlaah polimer dari asam amino yang dihubungkan dengan ikatan peptida. Molekul protein mengandung unsur-umsur C, H, O, N, P, S, dan terkadang mengandung unsur logam seperti besi dan tembaga (Winarno, 1992).
Kebanyakan protein merupakan enzim atau subunit enzim. Jenis protein lain berperan dalam fungsi struktural atau mekanis, seperti misalnya protein yang membentuk batang dan sendi sitoskeleton. Protein terlibat dalam sistem kekebalan (imun) sebagai antibodi, sistem kendali dalam bentuk hormon, sebagai komponen penyimpanan (dalam biji) dan juga dalam transportasi hara. Sebagai salah satu sumber gizi, protein berperan sebagai sumber asam amino bagi organisme yang tidak mampu membentuk asam amino tersebut (heterotrof) (Wikipedia, 2007).
Protein merupakan salah satu dari biomolekul raksasa, selain polisakarida, lipid, dan polinukleotida, yang merupakan penyusun utama makhluk hidup. Selain itu, protein merupakan salah satu molekul yang paling banyak diteliti dalam biokimia. Protein ditemukan oleh Jöns Jakob Berzelius pada tahun 1838 (Wikipedia, 2007).
Biosintesis protein alami sama dengan ekspresi genetik. Kode genetik yang dibawa DNA ditranskripsi menjadi RNA, yang berperan sebagai cetakan bagi translasi yang dilakukan ribosom. Sampai tahap ini, protein masih "mentah", hanya tersusun dari asam amino proteinogenik. Melalui mekanisme pascatranslasi, terbentuklah protein yang memiliki fungsi penuh secara biologi (Wikipedia, 2007).
Struktur tersier protein. Protein ini memiliki banyak struktur sekunder beta-sheet dan alpha-helix yang sangat pendek. Model dibuat dengan menggunakan koordinat dari Bank Data Protein (nomor 1EDH) (Wikipedia, 2007).
Struktur protein dapat dilihat sebagai hirarki, yaitu berupa struktur primer (tingkat satu), sekunder (tingkat dua), tersier (tingkat tiga), dan kuartener (tingkat empat). Struktur primer protein merupakan urutan asam amino penyusun protein yang dihubungkan melalui ikatan peptida (amida). Sementara itu, struktur sekunder protein adalah struktur tiga dimensi lokal dari berbagai rangkaian asam amino pada protein yang distabilkan oleh ikatan hidrogen (Wikipedia, 2007).
Berbagai bentuk struktur sekunder misalnya ialah alpha helix (α-helix, "puntiran-alfa"), berupa pilinan rantai asam-asam amino berbentuk seperti spiral; beta-sheet (β-sheet, "lempeng-beta"), berupa lembaran-lembaran lebar yang tersusun dari sejumlah rantai asam amino yang saling terikat melalui ikatan hidrogen atau ikatan tiol (S-H); beta-turn, (β-turn, "lekukan-beta"); dan gamma-turn, (γ-turn, "lekukan-gamma") (Wikipedia, 2007).
Gabungan dari aneka ragam dari struktur sekunder akan menghasilkan struktur tiga dimensi yang dinamakan struktur tersier. Struktur tersier biasanya berupa gumpalan. Beberapa molekul protein dapat berinteraksi secara fisik tanpa ikatan kovalen membentuk oligomer yang stabil (misalnya dimer, trimer, atau kuartomer) dan membentuk struktur kuartener. Contoh struktur kuartener yang terkenal adalah enzim Rubisco dan insulin (Wikipedia, 2007).

Tujuan Percobaan
Tujuan praktikum kali ini adalah untuk mengetahui proses denaturasi protein pada larutan albumin dengan pengendapan oleh logam, pengendapan oleh garam, uji koagulasi, pengendapan oleh alkohol, dan pengendapan akibat perubahan pH.
Alat dan Bahan
Alat yang digunakan dalam kegiatan praktikum kali ini antara lain tabung reaksi, rak tabung reaksi, pipet, pipet tetes, pipet volumetrik, pengaduk, panjepit tabung reaksi, dan penangas air.
Bahan yang digunakan antara lain, albumin, HgCl2 2%, larutan Pb- Asetat 5%, larutan AgNO3 5%, larutan (NH4)2SO4, air, pereaksi milon, pereaksi biuret, larutan asam asetat 1M, HCL 0.1 M, NaOH 0.1 M, buffer asetat pH 4.7, dan etanol 95%.
Prosedur Percobaan
Prosedur percobaan pengendapan protein oleh logam, ke dalam 3 ml albumin ditambahkan 5 tetes larutan HgCl2 5%, percobaan diulangi dengan larutan Pb-asetat 5% dan AgNO3 5%.
Prosedur percobaan pengendapan protein oleh garam, mula-mula larutan protein dijenuhkan dengan (NH4)2SO4 yang ditambahkan sedikit demi sedikit, kemudian disaring ketika telah mencapai titik jenuh, dan diuji kelarutannya dengan air, serta endapan diuji dengan pereaksi Millon, sedangkan filtrat diuji dengan peraksi Biuret.
Uji koagulasi dilakukan dengan cara 5 ml larutan protein ditambahkan dengan 2 tetes asam asetat 1 M , kemudian tabung diletakkan dalam penangas selama 5 menit, setelah itu endapan diambil oleh batang pengaduk, kelarutan endapan diuji dengan air, dan endapan diuji dengan pereaksi milon.
Prosedur percobaan pengendapan protein oleh alkohol, tabung reaksi pertama diisi larutan albumin 5 ml dan HCl0.1 M dan etanol 95% sebanyak 6 ml. Pada tabung reaksi dua diisi dengan 5 ml albumin yang ditambah dengan 1 ml NaOH 0.1 M dan Etanol 95% sebanyak 6ml. Pada tabung tiga diisi 5 ml albumin, buffer asetat pH 4.7 sebanyak 1 ml dan etanol 95% sebanyak 6 ml, setelah itu diamati dan dibandingkan hasil reaksinya.
Percobaan terakhir, denaturasi protein, tiga tabung reaksi masing-masing diisi dengan 4.5 ml larutan albumin, di mana masing-masing tabung pada tabung pertama ditambah dengan 1 ml bufer asetat, pada tabung II ditambah dengan 1 ml HCl 0.1 ml, dan pada tabung III ditambah dengan 1 ml NaOH 0.1M, setelah itu masing-masing dipanaskan selama 15 menit dan kemudian didinginkan pada temperatur kamar lalu diamati reaksi yang terjadi, setelah itu pada tabung I dan II ditambah 5 ml bufer aetat pH 4.7, hasil reaksinya diamati kembali.
Hasil Pengamatan
Tabel 1 Pengendapan Protein Oleh Logam
Logam
Hasil
Keterangan
HgCl2
Pb-Asetat
AgNO3
++
+
+++
Endapan putih susu
Endapan putih susu
Endapan putih susu
Keterangan :
+ : Endapan sedikit
++ : Endapan banyak
+++ : Endapan sangat banyak
Tabel 2 Pengendapan Oleh Garam
Uji
Hasil
Keterangan
Larut dengan air
Dengan pereaksi Millon
Dengan pereaksi Biuret
+
+
+
Endapan berbentuk butiran
Endapan berwarna kemerahan
Larutan berwarna violet atau ungu muda
Keterangan :
+ : Reaksi positif
- : Reaksi negatif
Tabel 3 Uji koagulasi terhadap protein
Uji endapan
Hasil
Keterangan
Larut dengan air
Dengan pereaksi Millon
-
+
Tidak larut
Endapan merah bata
Keterangan :
+ : Reaksi positif
- : Reaksi negatif
Tabel 4 Pengendapan Oleh Alkohol
Tabung
Reaksi
Keterangan
(HCl)
(NaOH)
Buffer asetat
+
++
+++
Endapan putih susu
Endapan putih susu
Endapan putih susu
Keterangan :
+ : Endapan sedikit
++ : Endapan banyak
+++ : Endapan sangat banyak
Tabel 5 Denaturasi protein
Tabung
Reaksi
Keterangan
(HCl)
(NaOH)
Buffer asetat
++
+
+++
Endapan putih susu
Endapan putih susu
Endapan putih susu
Keterangan :
+ : Endapan sedikit
++ : Endapan banyak
+++ : Endapan sangat banyak
Pembahasan
Larutan protein yang digunakan dalam praktikum ini adalah larutan albumin. Albumin adalah protein yang dapat larut dalam air serta dapat terkoagulasi oleh panas. Albumin terdapat dalam serum darah dan putih telur (Poedjiadi, 1994).
Denaturasi protein dapat diartikan suatu perubahan atau modifikasi terhadap struktur sekunder, tertier dan kuartener molekul protein tanpa terjadinya pemecahan ikatan-ikatan kovalen. Karena itu, denaturasi dapat diartikan suatu proses terpecahnya ikatan hidrogen, interaksi hidrofobik, ikatan garam dan terbukanya lipatan atau wiru molekul protein (Winarno, 1992).
Denaturasi protein meliputi gangguan dan kerusakan yang mungkin terjadi pada struktur sekunder dan tersier protein. Sejak diketahui reaksi denaturasi tidak cukup kuat untuk memutuskan ikatan peptida, dimana struktur primer protein tetap sama setelah proses denaturasi. Denaturasi terjadi karena adanya gangguan pada struktur sekunder dan tersier protein. Pada struktur protein tersier terdapat empat jenis interaksi yang membentuk ikatan pada rantai samping seperti; ikatan hidrogen, jembatan garam, ikatan disulfida dan interaksi hidrofobik non polar, yang kemungkinan mengalami gangguan. Denaturasi yang umum ditemui adalah proses presipitasi dan koagulasi protein (Ophart, 2003).
Denaturasi, koagulasi dan redenaturasi dapat dibedakan sebagai berikut. Denaturasi protein adalah suatu keadaan telah terjadinya perubahan struktur protein yang mencakup perubahan bentuk dan lipatan molekul, tanpa menyebabkan pemutusan atau kerusakan lipatan antar asam amino dan struktur primer protein. Koagulasi adalah denaturasi protein akibat panas dan alkohol (Winarno, 2002). Redenaturasi adalah denaturasi protein yang berlangsung secara reveresibel (Poedjiadi, 1994).
Panas dapat digunakan untuk mengacaukan ikatan hidrogen dan interaksi hidrofobik non polar. Hal ini terjadi karena suhu tinggi dapat meningkatkan energi kinetik dan menyebabkan molekul penyusun protein bergerak atau bergetar sangat cepat sehingga mengacaukan ikatan molekul tersebut. Protein telur mengalami denaturasi dan terkoagulasi selama pemasakan. Beberapa makanan dimasak untuk mendenaturasi protein yang dikandung supaya memudahkan enzim pencernaan dalam mencerna protein tersebut (Ophart, 2003).
Pemanasan akan membuat protein bahan terdenaturasi sehingga kemampuan mengikat airnya menurun. Hal ini terjadi karena energi panas akan mengakibatkan terputusnya interaksi non-kovalen yang ada pada struktur alami protein tapi tidak memutuskan ikatan kovalennya yang berupa ikatan peptida. Proses ini biasanya berlangsung pada kisaran suhu yang sempit (Ophart, 2003).
Seperti asam amino, protein yang larut dalam air akan membentuk ion yang mempunyai muatan positif dan negatif. Dalam suasana asam molekul protein akan membentuk ion positif, sedangkan dalam suasana basa akan membentuk ion negatif. Pada titik isolistrik protein mempunyai muatan positif dan negatif yang sama, sehingga tidak bergerak ke arah elektroda positif maupun negatif apabila ditempatkan di antara kedua elektroda tersebut. Protein mempunyai titik isolistrik yang berbeda-beda. Titik isolistrik protein mempunyai arti penting karena pada umumnya sifat fisika dan kimia erat hubungannya dengan pH isolistrik ini. Pada pH di atas titik isolistrik protein bermuatan negatif, sedangkan di bawah titik isolistrik, protein bermuatan positif. Titik isolistrik pada albumin adalah pada pH 4,55-4,90 (Poedjiadi, 1994).
Adanya gugus amino dan karboksil bebas pada ujung-ujung rantai molekul protein, menyebabkan protein mempunyai banyak muatan (polielektrolit) dan bersifat amfoter (dapat bereaksi dengan asam maupun basa). Daya reaksi berbagai jenis protein terhadap asam dan basa tidak sama, tergantung dari jumlah dan letak gugus amino dan karboksil dalam molekul. Dalam larutan asam (pH rendah), gugus amino bereaksi dengan H+, sehingga protein bermuatan positif. Sebaliknya, dalam larutan basa (pH tinggi) molekul protein akan bereaksi sebagai asam atau bermuatan negatif. Pada pH isolistrik muatan gugus amino dan karboksil bebas akan saling menetralkan sehingga molekul bermuatan nol (Winarno, 2002).
Garam logam berat seperti Ag, Pb, dan Hg akan membentuk endapan logam proteinat. Ikatan yang terbentuk amat kuat dan akan memutuskan jembatan garam, sehingga protein mengalami denaturasi. Secara bersama gugus –COOH dan gugus –NH2 yang terdapat dalam protein dapat bereaksi dengan ion logam berat dan membentuk senyawa kelat. Ion-ion tersebut adalah Ag+, Ca++, Zn++, Hg++, Fe++, Cu++, Co++, Mn++ dan Pb++. Selain gugus –COOH dan gugus –NH2, gugus –R pada molekul asam amino tertentu dapat pula mengadakan reaksi dengan ion atau senyawa lain. Gugus sulfihidril (-SH) pada molekul sistein akan bereaksi dengan ion Ag+ atau Hg++ (Poedjiadi, 1994). Dari hasil percobaan diketahiu bahwa reagsi antara logam berat dan albumin menghasilkan endapan, endapan yang paling banyak dihasilkan oleh AgNO3 diikuti HgCl2 dan Pb-asetat. Logam Ag dan Hg lebih reaktif daripada Pb kerena kedua logam tersebut merupakn logam transisi pada sistem periodik unsur. Garam logam berat sangat berbahaya bila sampai tertelan karena garam tersebut akan mendenaturasi sekaligus mengendapkan protein sel-sel tubuh. Hal ini seperti denaturasi oleh raksa (Hg) untuk pemurnian emas yang terjadi di Minamata, Jepang.
Kelarutan protein akan berkurang bila ke dalam larutan protein ditambahkan garam-garam anorganik, akibatnya protein akan terpisah sebagai endapan. Peristiwa pemisahan protein ini disebut salting out. Bila garam netral yang ditambahkan berkonsentrasi tinggi, maka protein akan mengendap. Pengendapan terus terjadi karena kemampuan ion garam untuk menghidrasi, sehingga terjadi kompetisi antara garam anorganik dengan molekul protein untuk mengikat air. Karena garam anorganik lebih menarik air maka jumlah air yang tersedia untuk molekul protein akan berkurang (Winarno, 2002). Larutan albumin dalam air dapat diendapkan dengan penambahan amoniumsulfat ((NH4)2SO4) hingga jenuh (Poedjiadi, 1994). Setelah larutan albumin dijenuhkan dengan (NH4)2SO4, uji kelarutan endapan yang terjadi dengan air menunjukkan hasil positif (endapan larut membentuk butiran). Kemudian butiran direaksikan dengan pereaksi milon, dan bereaksi positif dengan ditandai endapan berwarna kemerahan. Uji filtrat dengan pereaksi biuret juga menunjukkan hasil poisitif yang ditandai larutan berwarna ungu violet. Pengujian endapan yang dihasilkan dengan pereaksi milon bertujuan untuk mengetahui ada tidaknya kandungan tirosin, sedangkan pengujian filtrat dengan pereaksi biuret bertujuan untuk mengetahui ada tidaknya gugus amida pada filtrat yang dihasilkan.
Protein akan mengalami koagulasi apabila dipanaskan pada suhu 50oC atau lebih. Koagulasi ini hanya terjadi bila larutan protein berada titik isolistriknya (Poedjiadi, 1994). Pada pH iso-elektrik (pH larutan tertentu biasanya berkisar 4–4,5 di mana protein mempunyai muatan positif dan negatif sama, sehingga saling menetralkan) kelarutan protein sangat menurun atau mengendap, dalam hal ini pH isolistrik albumin adalah 4,55-4,90. Pada temperatur diatas 60oC kelarutan protein akan berkurang (koagulasi) karena pada temperatur yang tinggi energi kinetik molekul protein meningkat sehingga terjadi getaran yang cukup kuat untuk merusak ikatan atau struktur sekunder, tertier dan kuartener yang menyebabkan koagulasi (Blogspot, 2007). Pada uji koagulasi, penambahan asam asetat bertujuan agar larutan albumin mencapai pH isolistriknya sehingga bisa terkoagulasi. Hasil uji kelarutan endapan dengan air menunjukkan hasil negatif. Setelah endapan diuji dengan pereaksi millon, warna berubah menjadi merah bata yang artinya terjadi reaksi positif. Pengujian endapan yang dihasilkan dengan pereaksi milon bertujuan untuk mengetahui ada tidaknya kandungan tirosin.
Protein dapat diendapkan dengan penambahan alkohol. Pelarut organik akan mengubah (mengurangi) konstanta dielektrika dari air, sehingga kelarutan protein berkurang, dan juga karena alkohol akan berkompetisi dengan protein terhadap air (Blogspot, 2007). Pada uji pengendapan protein oleh alkohol endapan yang paling banyak dihasilkan oleh buffer asetat, diikuti oleh NaOH dan HCl. Buffer asetat menghasilkan endapan yang paling banyak karena memiliki pH 4,7 yang sama dengan pH isolistrik albumin (4,55-4,90). Sedangkan pada reaksi denaturasi albumin tanpa penambahan alkohol, endapan yang paling banyak dihasilkan oleh buffer asetat, diikuti oleh HCl dan NaOH ; penambahan bufer asetat bertujuan agar pH isolistrik tercapai, sehingga albumin dapat terdenaturasi.
Kesimpulan
Denaturasi protein adalah suatu perubahan atau modifikasi terhadap struktur sekunder, tertier dan kuartener molekul protein tanpa terjadinya pemecahan ikatan-ikatan kovalen. Koagulasi adalah denaturasi protein akibat panas dan alkohol. Adanya gugus amino dan karboksil bebas pada ujung-ujung rantai molekul protein, menyebabkan protein mempunyai banyak muatan (polielektrolit) dan bersifat amfoter (dapat bereaksi dengan asam maupun basa). Garam logam berat seperti Ag, Pb, dan Hg akan membentuk endapan logam proteinat. Kelarutan protein akan berkurang bila ke dalam larutan protein ditambahkan garam-garam anorganik, akibatnya protein akan terpisah sebagai endapan. Protein dapat diendapkan dengan penambahan alkohol.

Rabu, 2008 Agustus 27 | Label: Biokimia | |
Protein adalah suatu senyawa organik yang berbobot molekul tinggi berkisar antara beberapa ribu sampai jutaan. Protein ini tersusun dari atom C,H,O dan N serta unsur lain nya seperti P dan S yang membentuk unit-unit asam amino. Asam amino ini dapat dibagi menurut struktur kimianya (alifatik,aromatik,heterosiklik) atau menurut gugus R-nya.
Protein adalah makromolekul polipeptida yang tersusun dari sejumlah L-asam amino yang dihubungkan oleh ikatan peptida. Suatu molekul protein disusun oleh sejumlah asam amino tertentu dengan susunan yang sudah tertentu pula dan bersifat turunan. Pada pH 7 atau lebih, protein selalu bermuatan negatif,muatan positif dan non logam menetralkan muatan protein tersebut dan protein tidak larut lagi.
Sifat-sifat asam amino yaitu hampir semua asam amino larut dalam air dan tidak larut dalam pelarut non polar/organik seperti eter,kloroform dan aseton kecuali asam karboksilat baik yang alifatik maupun aromatik dan amina organik. Kristal asam amino mempunyai titik leleh yang agak tinggi.
Penentuan Jumlah dan jenis asam amino
Ikatan peptida yang menghubungkan asam amino terlebih dahulu diputus dengan hidrolisisis. Asam amino yang telah bebas kemudian diidentifikasi dengan cara kromatografi atau elektroforesisi. Jumlah asam amino ini kemudian dihitung setelah mereaksikannya dengan ninhidrin tau reaksi warna yang bersifat khas atau dengan spektrum asam amino aromatis dan lain-lan. Ikatan peptida dapat puladihidrolisisi dengan asam,basa atau enzim.
Beberapa Reaksi Protein
1. Dengan asam mineral pekat = akan mengendapkan protein tetapi endapan ini akan larut kembali jika asam berlebihan.
2. Basa tidak menyebabkan pengendapan protein tetapi mengakibatkan hidrolisis dan dekomposisi oksidatif.
3. Logam-logam berat mengendapkan protein, bergantung pada suhu dan elketrolit lain. Merkuri klorida dan perak nitrat membentuk endapan yang tidak dapat dilarutkan lagi sedangkan sulfat dan feriklorida menghasilkan endapan yang dapat dilarutkan kembali.
4. Pereaksi alkoloidal seperti asam trikloroasetat, asam tannat, asam fosfotungstat, asam fosfomobolibdat berfungsi sebagai pengendap protein bila pH larutan lebih asam daripada titik isolistrik protein tersebut.
5. Alkohol atau pelarut organik lain adalah juga pengendap protein dan lebih efektif pada titik isolistrik protein.
6. Panas menyebabkan koagulasi protein dengan suhu efektif berkisar antara 38-750C. beberapa faktor mempengaruhi koagulasi ini tetapi protein paling mudah berkoagulasi pada titik isolistriknya. Koagulum tidak larut kecuali jika pelarutnya dapat menghidrolisis atau memecahnya.
Beberapa Reaksi Warna Protein
1. Reaksi Millon
Reaksi ini digunakan untuk memerikasa adanya triftofan dalam molekul protein. Tambahkan 3 sampai 4 tetes pereaksi millon kedalam 5 ml larutan protein. Campur dan panaskan. Endapan putih segera timbul yang dengan pelan berubah menjadi merah. Reaksi ini tidak dapat berlangsung jika protein tidak mengendap dengan asam pekat.
2. Reaksi Biuret
Tambahkan basa dan 2-3 tetes larutan Cu-sulfat (kurang lebih 0,02 persen). Perubahan warna terjadi, bergantung pada jenis protein. Percobaan ini khas untuk ikatan peptida.
3. Reaksi Xantoprotein
Asam nitrat yang ditambahkan ke dalam larutan protein menyebabkan warna kuning yang kemudian berubah menjadi oranye jika ditambahkan basa. Reaksi ini terjadi jika di dalam protein didapatkan asam amino dengan inti aromatik seperti triftopfan, tirosin, dn fenilalanin.
4. Percobaan Hopkins-Cole
Reaksi ini khas untuk asam amino triptofan. Bahan yang mengandung triptofan membentuk warna violet pada batas antara bahan dan asam glioksilat.
5. Reaksi Ninhidrin
Reaksi ini berguna untuk semua senyawa protein yang mengandung sekurang-kurangnya satu gugus karboksil dan satu gugus amino yang bebas.
Denaturasi Protein
Kebanyakan protein hanya berfungsi aktif biologis pada daerah pH dan suhu yang terbatas. Jika pH dan suhu berubah melewati batas-batas tersebut, protein akan mengalami denaturasi. Karena enzim juga merupakan suatu protein, maka jika terjadi denaturasi, enzim akan kehilangan aktivitas biologisnya. Dalam hal ini ikatan peptida tidak berubah yang berubah adalah bentuk lipatannya. Proses kembali ke bentuk asal setelah terjadi denaturasi disebut renaturasi. Untuk pengembalin ini tidak diperlukan bahan kimia, biasanya terjadi karena perubahan pH atau suhu.
Beberapa prinsip Reaksi Protein :
Prinsip dasar : Albumin dengan dipanaskan secara terus menerus di atas api akan tercium bau rambut terbakar, hal ini menunjukkan bau khas dari senyawa nitrogen. Selain itu dengan pemanasan yang terus-menerus akan terbentuk arang yang menunjukkan adanya unsure karbon. Pada bagian atas dinding tabung reaksi didapatkan titik-titik uap air. Adanya uap air menunjukkan adanya unsur hidrogen.
Kelarutan Protein
Tujuan : untuk menunjukkan kelarutan protein tertentu terhadap macam-macam pelarut.
Prinsip dasar :
Kelarutan dari jenis-jenis protein dapat dibedakan keadaannya, hal ini tergantung pada jenis dan macam pelarut yang cocok. Contoh : albumin dapat larut dalam air, asam encer, garam encer, akali encer.
Uji Biure
Tujuan : untuk menunjukkan adanya ikatan peptida yang membentuk suatu protein.
Prinsip Dasar: Biuret didapat dari pemanasan urea pada 80 C.

 
Design by Wordpress Theme | Bloggerized by Free Blogger Templates | free samples without surveys